698 research outputs found

    Metaphysics and Race

    Get PDF
    This thesis examines the metaphysics of race. It begins by trying to find an interpretation of the claim that race is socially constructed which makes sense as a position within a substantive metaphysical debate. By identifying the different commitments and controversies in the debate, I argue that the best such interpretation is a constitutive one. I then consider Barnes’s (2020) discussion of the metaphysics of gender, in which she advocates two theses. The negative thesis holds that a successful metaphysics of gender need not line up with ordinary gender terms and beliefs. The positive thesis holds that the metaphysics of gender is concerned with explaining the various phenomena of gender. The expressions required in our ideology and posited categories and entities required in our ontology are those needed to satisfactorily explain gender. In applying this to race, I argue that there is no distinctive explanatory task for metaphysicians of race to engage in. There is no explanatory remainder left once the natural and social sciences have performed their work. The correct metaphysics of race, while concerned with explaining the phenomena of race, is not to be determined by metaphysicians. This is the modified positive thesis. The modified positive thesis fits neatly with the post-Quinean thought that science and metaphysics are continuous. In Chapter 3, I argue for deflationism regarding the actual metaphysics of race debate. There is an ontological consensus - an agreement over what, empirically, there is - between the participants. What they disagree over is what racial concepts (should) apply to. But, while interesting and useful, this isn’t a substantive metaphysical debate. The debate over how to explain race, on the other hand, is substantive. I discuss related issues, including the distinctions between pluralism, deflationism, and racial scepticism, and the presuppositions of the standard debate regarding natural kinds

    Novel shape indices for vector landscape pattern analysis

    Get PDF
    The formation of an anisotropic landscape is influenced by natural and/or human processes, which can then be inferred on the basis of geometric indices. In this study, two minimal bounding rectangles in consideration of the principles of mechanics (i.e. minimal width bounding (MWB) box and moment bounding (MB) box) were introduced. Based on these boxes, four novel shape indices, namely MBLW (the length-to-width ratio of MB box), PAMBA (area ratio between patch and MB box), PPMBP (perimeter ratio between patch and MB box) and ODI (orientation difference index between MB and MWB boxes), were introduced to capture multiple aspects of landscape features including patch elongation, patch compactness, patch roughness and patch symmetry. Landscape pattern was, thus, quantified by considering both patch directionality and patch shape simultaneously, which is especially suitable for anisotropic landscape analysis. The effectiveness of the new indices were tested with real landscape data consisting of three kinds of saline soil patches (i.e. the elongated shaped slightly saline soil class, the circular or half-moon shaped moderately saline soil, and the large and complex severely saline soil patches). The resulting classification was found to be more accurate and robust than that based on traditional shape complexity indices

    Spatiotemporal subpixel mapping of time-series images

    Get PDF
    Land cover/land use (LCLU) information extraction from multitemporal sequences of remote sensing imagery is becoming increasingly important. Mixed pixels are a common problem in Landsat and MODIS images that are used widely for LCLU monitoring. Recently developed subpixel mapping (SPM) techniques can extract LCLU information at the subpixel level by dividing mixed pixels into subpixels to which hard classes are then allocated. However, SPM has rarely been studied for time-series images (TSIs). In this paper, a spatiotemporal SPM approach was proposed for SPM of TSIs. In contrast to conventional spatial dependence-based SPM methods, the proposed approach considers simultaneously spatial and temporal dependences, with the former considering the correlation of subpixel classes within each image and the latter considering the correlation of subpixel classes between images in a temporal sequence. The proposed approach was developed assuming the availability of one fine spatial resolution map which exists among the TSIs. The SPM of TSIs is formulated as a constrained optimization problem. Under the coherence constraint imposed by the coarse LCLU proportions, the objective is to maximize the spatiotemporal dependence, which is defined by blending both spatial and temporal dependences. Experiments on three data sets showed that the proposed approach can provide more accurate subpixel resolution TSIs than conventional SPM methods. The SPM results obtained from the TSIs provide an excellent opportunity for LCLU dynamic monitoring and change detection at a finer spatial resolution than the available coarse spatial resolution TSIs

    Anisotropy characteristics of exposed gravel beds revealed in high-point-density airborne laser scanning data

    Get PDF
    The aim of this study was to examine the relationship between the anisotropy direction of exposed gravel bed and flow direction. Previous studies have shown that the anisotropy direction of a gravel bed surface can be visually determined in the elliptical contours of 2-D variogram surface (2DVS). In this letter, airborne laser scanning (ALS) point clouds were acquired at a gravel bed, and the whole data set was divided into a series of 6 m × 6 m subsets. To estimate the direction of anisotropy, we proposed an ellipse-fitting-based automatic procedure with consideration given to the grain size characteristic d50 to estimate the primary axis of anisotropy [hereafter referred to as the primary continuity direction (PCD)] in the 2DVS. The ALS-derived PCDs were compared to the flow directions (for both high and low flow) derived from hydrodynamic model simulation. Comparison of ALS-derived PCDs and simulated flow directions suggested that ALS-derived PCDs could be used to infer flow direction at different flow rates. Furthermore, we found that the ALS-derived PCDs estimated from any elliptical contour of the 2DVS exhibited a similar orientation when the contours of the 2DVS reveal the clear anisotropic structure, demonstrating the robustness of the technique

    Major trends in the land surface phenology (LSP) of Africa, controlling for land cover change

    Get PDF
    Monitoring land surface phenology (LSP) trends is important in understanding how both climatic and non-climatic factors influence vegetation growth and dynamics. Controlling for land-cover changes in these analyses has been undertaken only rarely, especially in poorly studied regions like Africa. Using regression models and controlling for land-cover changes, this study estimated LSP trends for Africa from the enhanced vegetation index (EVI) derived from 500 m surface reflectance Moderate-Resolution Imaging Spectroradiometer (MOD09A1), for the period from 2001 to 2015. Overall end of season showed slightly more pixels with significant trends (12.9% of pixels) than start of season (11.56% of pixels) and length of season (LOS) (5.72% of pixels), leading generally to more ‘longer season’ LOS trends. Importantly, LSP trends that were not affected by land-cover changes were distinguished from those that were influenced by land-cover changes such as to map LSP changes that have occurred within stable land-cover classes and which might, therefore, be reasonably associated with climate changes through time. As expected, greater slope magnitudes were observed more frequently for pixels with land-cover changes compared to those without, indicating the importance of controlling for land cover. Consequently, we suggest that future analyses of LSP trends should control for land-cover changes such as to isolate LSP trends that are solely climate-driven and/or those influenced by other anthropogenic activities or a combination of both

    Population vulnerability models for asteroid impact risk assessment

    Get PDF
    An asteroid impact is a low probability event with potentially devastating consequences. The Asteroid Risk Mitigation Optimization and Research (ARMOR) software tool calculates whether a colliding asteroid experiences an airburst or surface impact and calculates effect severity as well as reach on the global map. To calculate the consequences of an impact in terms of loss of human life, new vulnerability models are derived that connect the severity of seven impact effects (strong winds, overpressure shockwave, thermal radiation, seismic shaking, ejecta deposition, cratering, and tsunamis) with lethality to human populations. With the new vulnerability models, ARMOR estimates casualties of an impact under consideration of the local population and geography. The presented algorithms and models are employed in two case studies to estimate total casualties as well as the damage contribution of each impact effect. The case studies highlight that aerothermal effects are most harmful except for deep water impacts, where tsunamis are the dominant hazard. Continental shelves serve a protective function against the tsunami hazard caused by impactors on the shelf. Furthermore, the calculation of impact consequences facilitates asteroid risk estimation to better characterize a given threat, and the concept of risk as well as its applicability to the asteroid impact scenario are presente

    Full year crop monitoring and separability assessment with fully-polarimetric L-band UAVSAR:A case study in the Sacramento Valley, California

    Get PDF
    Spatial and temporal information on plant and soil conditions is needed urgently for monitoring of crop productivity. Remote sensing has been considered as an effective means for crop growth monitoring due to its timely updating and complete coverage. In this paper, we explored the potential of L-band fully-polarimetric Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) data for crop monitoring and classification. The study site was located in the Sacramento Valley, in California where the cropping system is relatively diverse. Full season polarimetric signatures, as well as scattering mechanisms, for several crops, including almond, walnut, alfalfa, winter wheat, corn, sunflower, and tomato, were analyzed with linear polarizations (HH, HV, and VV) and polarimetric decomposition (Cloude–Pottier and Freeman–Durden) parameters, respectively. The separability amongst crop types was assessed across a full calendar year based on both linear polarizations and decomposition parameters. The unique structure-related polarimetric signature of each crop was provided by multitemporal UAVSAR data with a fine temporal resolution. Permanent tree crops (almond and walnut) and alfalfa demonstrated stable radar backscattering values across the growing season, whereas winter wheat and summer crops (corn, sunflower, and tomato) presented drastically different patterns, with rapid increase from the emergence stage to the peak biomass stage, followed by a significant decrease during the senescence stage. In general, the polarimetric signature was heterogeneous during June and October, while homogeneous during March-to-May and July-to-August. The scattering mechanisms depend heavily upon crop type and phenological stage. The primary scattering mechanism for tree crops was volume scattering (>40%), while surface scattering (>40%) dominated for alfalfa and winter wheat, although double-bounce scattering (>30%) was notable for alfalfa during March-to-September. Surface scattering was also dominant (>40%) for summer crops across the growing season except for sunflower and tomato during June and corn during July-to-October when volume scattering (>40%) was the primary scattering mechanism. Crops were better discriminated with decomposition parameters than with linear polarizations, and the greatest separability occurred during the peak biomass stage (July-August). All crop types were completely separable from the others when simultaneously using UAVSAR data spanning the whole growing season. The results demonstrate the feasibility of L-band SAR for crop monitoring and classification, without the need for optical data, and should serve as a guideline for future research

    Fusion of Sentinel-2 images

    Get PDF
    Sentinel-2 is a very new programme of the European Space Agency (ESA) that is designed for fine spatial resolution global monitoring. Sentinel-2 images provide four 10 m bands and six 20 m bands. To provide more explicit spatial information, this paper aims to downscale the six 20 m bands to 10 m spatial resolution using the four directly observed 10 m bands. The outcome of this fusion task is the production of 10 Sentinel-2 bands with 10 m spatial resolution. This new fusion problem involves four fine spatial resolution bands, which is different to, and more complex than, the common pan-sharpening fusion problem which involves only one fine band. To address this, we extend the existing two main families of image fusion approaches (i.e., component substitution, CS, and multiresolution analysis, MRA) with two different schemes, a band synthesis scheme and a band selection scheme. Moreover, the recently developed area-to-point regression kriging (ATPRK) approach was also developed and applied for the Sentinel-2 fusion task. Using two Sentinel-2 datasets released online, the three types of approaches (eight CS and MRA-based approaches, and ATPRK) were compared comprehensively in terms of their accuracies to provide recommendations for the task of fusion of Sentinel-2 images. The downscaled ten-band 10 m Sentinel-2 datasets represent important and promising products for a wide range of applications in remote sensing. They also have potential for blending with the upcoming Sentinel-3 data for fine spatio-temporal resolution monitoring at the global scale

    A multiple-point spatially weighted k-NN classifier for remote sensing

    Get PDF
    A novel classification method based on multiple-point statistics (MPS) is proposed in this article. The method is a modified version of the spatially weighted k-nearest neighbour (k-NN) classifier, which accounts for spatial correlation through weights applied to neighbouring pixels. The MPS characterizes the spatial correlation between multiple points of land-cover classes by learning local patterns in a training image. This rich spatial information is then converted to multiple-point probabilities and incorporated into the k-NN classifier. Experiments were conducted in two study areas, in which the proposed method for classification was tested on a WorldView-2 sub-scene of the Sichuan mountainous area and an IKONOS image of the Beijing urban area. The multiple-point weighted k-NN method (MPk-NN) was compared to several alternatives; including the traditional k-NN and two previously published spatially weighted k-NN schemes; the inverse distance weighted k-NN, and the geostatistically weighted k-NN. The classifiers using the Bayesian and Support Vector Machine (SVM) methods, and these classifiers weighted with spatial context using the Markov random field (MRF) model, were also introduced to provide a benchmark comparison with the MPk-NN method. The proposed approach increased classification accuracy significantly relative to the alternatives, and it is, thus, recommended for the identification of land-cover types with complex and diverse spatial distributions

    A multiple-point spatially weighted k-NN method for object-based classification

    Get PDF
    Object-based classification, commonly referred to as object-based image analysis (OBIA), is now commonly regarded as able to produce more appealing classification maps, often of greater accuracy, than pixel-based classification and its application is now widespread. Therefore, improvement of OBIA using spatial techniques is of great interest. In this paper, multiple-point statistics (MPS) is proposed for object-based classification enhancement in the form of a new multiple-point k-nearest neighbour (k-NN) classification method (MPk-NN). The proposed method first utilises a training image derived from a pre-classified map to characterise the spatial correlation between multiple points of land cover classes. The MPS borrows spatial structures from other parts of the training image, and then incorporates this spatial information, in the form of multiple-point probabilities, into the k-NN classifier. Two satellite sensor images with a fine spatial resolution were selected to evaluate the new method. One is an IKONOS image of the Beijing urban area and the other is a WorldView-2 image of the Wolong mountainous area, in China. The images were object-based classified using the MPk-NN method and several alternatives, including the k-NN, the geostatistically weighted k-NN, the Bayesian method, the decision tree classifier (DTC), and the support vector machine classifier (SVM). It was demonstrated that the new spatial weighting based on MPS can achieve greater classification accuracy relative to the alternatives and it is, thus, recommended as appropriate for object-based classification
    corecore